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Analytical and Numerical Studies of the Relative

Convergence Phenomenon Arising in the

Solution of an Integral Equation

by the Moment Method
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Abstract—The relative convergence phenomenon that occurs in

the nmnerical solution of the integral equation for the irk discon-

tinuity problem is studied both analytically and numerically. It is

shown that the solution for the aperture field can be highly dependent

upon the manner in which the kernel and the unknown function are

approximated in the process of constructing a matrix equation by the

moment method. An analytical explanation is provided for the above

phenomenon and the theoretical predictions are verified numerically.

Also incIuded is a suggested numericaf algorithm for detecting

and alleviating the relative convergence behavior for more general

problems.

I. INTRODUCTION

~T WAS pointed out a number of years ago [I] that

1 the manner in which

finite matrix arising

boundary value problem

one partitions a doubly in-

in the formulation of the

in a bifurcated waveguide
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significantly affects the results for the scattering coef-

ficients in the guide. This phenomenon was referred to

as “relative convergence” and it was proven that there

exists a unique choice for the partitioning ratio that

yields the correct result. It was also demonstrated that

anything but the correct choice of partitioning will

lead to results that violate the “edge condition” [2].

Recently it was discovered that the relative con-

vergence phenomenon also occurs in a variety of other

problems [3 ]– [5 ], even where a completely different

mode of formulation is employed. It was found, for

instance, that the matrix equation obtained by the

mode matching formulation [6], [7] or by the applica-

tion of the moment method to integral equations ex-

hibits relative convergence. As an example, it has been

found that the integral equation

s

b

K(*, x’)y(x’)dz’ = g(x), O<x<b (1)
o

for the iris discontinuity problem in a waveguide ex-
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Fig. 1. Inductive irks in parallel-plate waveguide.

hibits a relative convergence phenomenon when solved

by the moment method. That is, if +(x), the unknown,

is approximated in terms of an Ill-term Fourier series

w) = 5 &7@m(*) (2)
m=l

then the best approximation to the true solution is ob-

tained for a critical value of M, say JIZc. The critical

value iW. is in turn dependent on P, the number of terms

retained in the truncated form of series representation

for the kernel

K(A x’) = s%x.($)x.(x’).
n=l

(3)

For the iris problem, the x.’s are the Fourier series

basis functions for the range O <x < a, and a is the trans-

verse dimension of the waveguide.

The purpose of this paper is twofold: to provide an

analytical explanation of the relative convergence

phenomenon arising in the iris discontinuity problem;

and to suggest a numerical approach for detecting and

resolving the relative convergence phenomenon.

In Section II, an integral equation is derived for the

iris discontinuity in the waveguide and transformed

into a matrix equation using the moment method. An

alternative set of equations is derived for the same prob-

lem in Section III, using the mode matching method.

This set of alternative equations, although equivalent

to those derived earlier by the moment method, are

found to be more convenient for analytical processing.

In Section IV, the modified residue calculus technique

is applied to solve the matrix equation obtained by the

mode matching method. The critical value of M is now

determined by investigating the asymptotic behavior

of a generating function of complex variable, the

residues of which are related to the unknown modal

coefficients in the waveguide.

Finally, some numerical results that support the

theoretical predictions of Section IV are presented in

Section V. A method for detecting the relative conver-

gence phenomenon and extracting the correct solution

in the presence of this phenomenon is suggested on the

basis of the numerical experiments on the iris problem.

II. MOMENT METHOD OF SOLUTION

The geometry for the iris discontinuity problem in the

parallel-plate waveguide is shown in Fig. 1. The dis-

cussion below will be restricted to the TE case only,

although the analysis for the TM case can be carried out

~

II

1
,EY

I--U-MAGNET”‘A’-’
Fig. 2. Equivalent geometry of inductive iris in

case of symmetrical excitation.

along similar lines. It is well known that the solution to

the original iris problem can be derived from those of

two auxiliary problems—the symmetrical and asym-

metrical excitations. For the latter case, the aperture

(z= O, 0 <x <b) is replaced by the electric wall, and

hence, the problem becomes a trivial one. The sym-

metrical case leads to the auxiliary problem shown in

Fig, 2, where the aperture is replaced by a magnetic

wall. In the following, only this auxiliary problem is

treated since it contains the necessary information for

constructing the solution to the original problem.

The first step is to write the total field in terms of the

eigenfunctions of the waveguide when the TE,~ mode

is incident from the left.

Eu(x, z) = sin= e–”” -t ~ An sin ~~x e+a@ (4)
a ‘n=l a.

“.=[(341”
“[’’-m’” (5)

All the other field components are derivable from this

expression. In view of the boundary conditions at the

plane z = O, we have

EV(*, O) = sin ‘x + ~ A. sin ‘LX
a ‘n=.l a

y)(x),

{

O<x<b
.

0, b<x<a

dEg
~($,0) = –a, sin=+ Sa.A~sfn:
,’ a n=l

{

o, O<~<b

= g(x), b<x<a

(6)

(7)

where ~(x) is unknown aperture E field for O <X < b,

and ~(x) is proportional to the unknown surface current

on the slit, b <x <a.

By Fourier analyzing (6) and substituting An into

(7), we may derive the integral equation for the aper-

ture field ~(x):

sb

K($, $d)+($r’)dx’ = g(x), O<x<b (8)

o

where

‘tt?r%
!

~(x, z’) == ~ a. sin — sin 1r3- (9)

n-l a a
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is the kernel and

s3rx
g(x) = aa, sin —

a
(10)

the known inhomogeneous term.

To solve the integral equation (8) by one of the

moment methods, say Galerkin’s method [8], we first

approximate +(x) with a finite number of basis func-

tions

*(X) = 5 B##)m(x),
m~x

f$~(x) = sin — . (11)
m=l b

Next, we substitute (11) into (8) and take the inner

product of (8) with the weight functions @z(x), 1 =1,

2, . . . , ill. The result is the iW X M matrix equation.

&Kf%R4m>=<4,, g>, J = 1,2,.. .,M (12)
?%=1

where ~ is an integral operator given by

f

b

i?= dx’lr($, x’)

o

(13)

and the inner product <41, g> k explicitly written as

sb

<@t, g> = #V(*) g(*)d*. (14)
o

The exact solution to the integral equation can in prin-

ciple be obtained from (12) after letting M+ m. In

practice, however, ill is necessarily finite and the sum-

mation in ~(x, x’) must also be truncated, say at n = P.

After carrying out the necessary integrations, (12)

can be explicitly written as

mrb
sin —

a
= aas 1=1, 2,. .*, M (15)

clsz — f??

where

A=[EFwI’’’=W%)T(I’)
III. MODE MATCHING METHOD OF SOLUTION

In Section II we transformed the integral equation

into a matrix equation using the moment method. In

this section an alternative set of equations is derived by

an application of the mode matching method.

First, we introduce an auxiliary geometry shown in

Fig. 3, where a small septum of length 6 is introduced.

It is evident that the original structure in Fig. 2 can be

recovered by letting 8+0 in the auxiliary geometry. We

now write the eigenfunction expansions for the fields in

Fig. 3.

4 m I t
1= -!-A :.
; 6Y

@
MAGNETIC~
wALL :

‘1

.Jq’

+ II
*-

Auxiliary geometry for iris discontinuity

the fictitious waveguides B and C as follows:

problem.

O<z<b (17)

N

EU(X, z) = ~ C. sin
mr(a — *)

{e-?’.. - e7n(,-~,}/2,

n=l c

b<x<a (18)

where & is given by (16) and

‘n= [(9-’211’2=’[’Z- (31’2’19’
Note that the infinite summations in (17) and (18) are

truncated at M and N, respectively. After truncating

the summation in (4) at n = P, we match the fields at

the interface z = O. Letting ti go to zero, we obtain the

equations

Sirx P ‘n?rx ‘w mm
sin —+~Ansin —= ~Bnsin—--~

a ~=1 a ‘n=l b

O<x<b (20a)

P ‘n?rx
—a. sin~+ ~anAnsin— = O, O<x<b (20b)

a n=l a

P

sin ~ + ~ An sin ‘Zx = O, b<x<a (21a)
a ‘n=l a

b < x < a. (21b)

The next step is to transform these equations into the

spectral domain by eliminating the x variation. To this

end we multiply (20) by sin (mmv/b) and integrate from

O to b. Also, (21) is multiplied by sin { m~(a–x)/c ]

and integrated from b to a. This gives

sirb

f’)’j=l, z...
7 , M (22a)

m=l,2, . . ..M (22b)
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mrb the auxiliary equations ancf showing their equivalence
sin —

Xn to (15) is that the latter set cloes not lend itself directly

‘~+k = o, to convenient analytical processing.
0!s2 — ymz rl=l anz — ,Bm2

m=l,2. ... Lv) (23a] IV. INVESTIGATION BY THE MODIFIED

RESIDUE CALCUI.US TECHNIQ LJEwrb
as sin — —

~ + k ““A”
c’

— = (–1)”+’ ym= cm,
asi — ymz %=1 %2 — -ymg

m=l,2 . . . N (23b)>

where

(24)

By choosing Mi-N=P, we can solve the P XP matrix

equation comprising (22b) and (23a). Substituting the

resulting ~n’s into (22a) we may then obtain the ex-

pansion coefficients B~ of the aperture E field in the

region O <x <b.

We may also derive an alternative set of equations by

Fourier analyzing (20) and (21) in the range O <x < a.

The equations read

The modified residue calculus technique [9], [10] is a

useful method for solving the infinite set of equations of

the type (22) and (23). The method has a number of

unique features, one of which is its ability to enforce the

satisfaction of the edge condition. We will make use of

this feature to investigate the relative convergence

phenomena.

To this end, we first multiply (22a) and (23a) by ~~

and ~~, respectively, and add and subtract the resulting

equations from (22b) and (23 b). We then obtain

mrb
sin —

x.
5+5 —– = (–l)”;:%,

% + pm n=l an — pm

%= 1,2...
) J M (27a)

mrb
sin —

—— ~ + ~:, ;jc = (–1)mi-1 % Bm,

ffs — An

m=l,2, . . ..M (27b)

The above set of equations allow us to solve for B% and

Cm directly by choosing ill+ N = P and eliminating Am.

Our next step is to show the equivalence between the

moment method and the mode matching method. To

this end, we eliminate A. from (22b) and (25a) and ob-

tain

sirb
sin —

a
= aa. —— . (26)

a!sg — (312

We observe that (26) is identical to (15) obtained earlier

by the moment method. Having demonstrated the

equivalence between the truncated forms of matrix

equation derived via mode matching and moment

methods, we return to (22) and (23) and construct an

analytical representation for its solution. The reason for

our going through this elaborate procedure of deriving

m=l,z,...,~. (Zgb)

Also eliminating B~ and cm, we get

P

( 2. 2. )24 ——+——
n= 1 % — An an + Pm

-( 1 1

)

s~b
— + ‘— sin -— J

c% + /?. as — hl a

W=1,2, . . ..M (29a)

‘( 1 1

)

rrb
— sin —–— ,

c% + y. as — ym a

m=l,2. ... N.? (29b)

The essential step in the modified residue calculus

technique is the construction of a mesomorphic func-



100 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TSCHNIQUSS, FEBRUARY 1972

tion j(a) satisfying the following conditions:

1) j(u) has simple poles at a = an,

fi=l, z,... , P, and atu=—m.

2) f(~m)+f(–~m)=o, fVZ=l, 2, “ “ “ , M, M+N=P.

f(ym)–j(–%)=o, ??2=1, 2, . . . . N, M+N=P.

3) j(u) -ar’, l<v<2as \OJl ~w.

mrb
4) llf(-a,) = sin —

a

where &(- a,) is the residue of j(u) at o = — a,.

It is possible to relate the unknown coefficients A., B.,
etc., to the function ~(co) via the following manipula-

tions. Consider the integrals appearing below with con-

tours C as circles at infinity.

Then it can be shown [9] that

An = Rf(a.), n=l,2, . . ..P (30)

2mr

—.f(-%)> m=l,2, . . ..M (31)B~ = (–1)~ bz~~

2m7r
cm = (–l)”— f(–%n)>

Czym

%= 1,2,... ,N=P– M. (32)

From these equations we see that once the function

j(a) is constructed, the problem can be considered as

solved. A suitable form of j(a) is

[( )1Abln~+cln:
T(@, s)~(% 7)

g(a) = exp
c (a+ as)7r(@, a)

(34)
n-

codq
p(@) =l+5~+5— (35)

*=1 & — w ~=1 ‘y* — @

where

“(””)‘Wit)exp(%) ‘3’s)

‘(”7)‘E(+ex’(:) ‘3’b)

“(’”a)‘M’-:)exw (36c)

The unknown constants CP and d, are to be determined

so that the condition 2) is satisfied, and the normaliza-

tion constant K is determined from the condition 4).

It should be remarked that except for a normalization

constant, g(u) can be identified with the exact solution

for the semi-infinite bifurcation problem, i.e., the one

where 8 is infinite in Fig. 3.

We will not attempt to construct an exact form of

j(u) by determining Cp and d,. Instead, we will merely

investigate the asymptotic behavior of j(a) when AI,

N, and P become large and show that only one critical

choice of it/N gives the correct asymptotic behavior of

j(m), which, in turn, determines the behavior of the

field coefficients An, B., and C. for large n.

Note first that all of these coefficients must behave as

A., B%, Cm ~ W–312, withndw.

This is required by the physical constraint that the field

must satisfy the edge condition [2]. From (30), (31),

and (32), it can be shown that v = 3/2 in the condi-

tion 3).

Mittra [1] proved that the canonical function g(a)

shows the relative convergence phenomena. That is,

when M, N, P* w,

g(co) - o@/2, I@ I+@ (37)

only if i14/N = b/c, and g(u) either decays or grows

exponentially for any other choice of M/N. What we

will now show is that, for an incorrect choice of the

ratio M/N, the asymptotic behavior of j(u) is the same

as that of g(u). This is because the perturbation factor

p(a) in ~(u) cannot alter the exponential behavior due

to g(u).

In the following, we consider the behavior of @(co) as

IIco+ mfor two different cases. It should be pointed out

that for convergence reasons we need only consider the

cases where CP (or dg) either decays exponentially or has

the behavior @’, p <O.

Case 1

CP decays exponentially

S(CU) = jj =—-0((0-1)
~=1 & — w

and hence p(u) ~O(coO).

Case 2a

Cp ~ O(fl), –l<v <o.

We apply the Euler–Maclaurin sum formula

(38)

[11]

(39)
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Fig. 4. Normalized susceptance of inductive iris versus
values of M. TEIO incident, b = 0.4a, P = 100.

K– 1

~++ {sm k(K)
s(u) m! ~ h(”v)dx + —

p=l & — w T K 2

- ~;: =:+ M} (40)

where K is some large integer beyond which we can ap-

proximate c,= ccI@”and fiP = #~/b; Bz% are the Bernoulli

numbers; and h(x) is given by

101

t
54.5

[“=,5

~M. 41

M=40

M - 39
M=37

bw
,.-5 ~

h(x) = = , ~=—. (41) 0 8 “ 2’ ‘-” 40 48
p–a n-

Fig. 5. Magnitude of 1% for inductive iris

Using the Stieltjes transform. [12] when arg a# O or the
versus w. TEIO incident, b = 0.4a.

Hilbert transform [12] when arg a = O, we find

S. sK

k(x)dx = h(~)dx + Koa’ & O(aU).
K o

Hence

s(o) * 0(0”), –l<. <0

for large w. This gives

Case 2b

The asymptotic form of ~(x) is

(42) 1

I
lnx —--x,

*(X) -
1

(43) (ln(–x) –7rcot7rx-~,

Hence for large o

cl’ — Case 2C
T cob

s(u) = 5
{

c. – ~++(–a)
~=1 P(p — a) = — }

(44) c, - o(p),—Ii-a a V<—1.

Iarg%l <7r

(46)

arg x = r.

where c. is the Euler’s constant and i(x) is the di-
lt is easy to show that the summation

formly and
gamma function defined by

s(w) - O(hrl)
~(x) = ~ In I’(x). (45)

and hence P (co) ~O(coO).

(47)

converges uni-

(48)

-..
On the basis of the above results, we conclude that

r(x) is the conventional gamma function and a = ba/~. the presence of the factor ~(co) in ~(co) calnnot alter its
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Fig. 6. Magnitude of Bm for symmetric inductive iris versus
m. TEIO incident, 40 percent aperture width, P = 100.

asymptotic behavior when g(o) either exponentially de-

cays or grows for large co. Hence, just as in the case of

bifurcated waveguide, correct results are obtained only

for the numerical choice of the ratio

M/P = b/a. (49]

By reference to (30), (31), and (32), we note that the

field coefficients have an exponential behavior for large

n unless (49) is satisfied.

In addition to the theoretical explanation given

above, it is possible to provide an intuitive interpreta-

tion of the relative convergence phenomenon arising in

the moment method of solution. Since the kernel

K(x, x’) has been approximated by truncating the right-

hand side of (3), the computations are insensitive to

spatial oscillations of ~(x) that are more rapid than a

certain fixed amount, which depends directly on P. Er-

roneous results must be obtained if M is so large that

excessive spatial oscillations of ~(x) are included. The

point is that if ill is too large compared with P, then the

matrix that has to be inverted becomes ill conditioned.

1 ‘~he authors are grateful to one of the reviewers for suggesting

this explanation.
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Fig. 7. Magnitude of B- for capacitive iris versus m.
TEM incident, b = 0.4a, P= 100.

V. NUMERICAL RESULTS AND DISCUSSION

In this section we present some numerical results in

support of the predictions based upon the theoretical

discussion in the last section. Fig. 4 shows the nor-

malized susceptance of the inductive iris discontinuity.

Because the ratio of the aperture area to the total guide

dimension is 40 percent and P = 100, then M= 40 should

give the best answer. It may be noticed that for M< 40

the numerical value of susceptance is not greatly in

error. However, for M> 40 the numerical values for the

susceptance deviate rather rapidly from the correct

results.

We also note that on the basis of the susceptance cal-

culations alone, it is not possible to select the correct

value of M without resorting to experimental verifica-

tion of the calculated data. We find, however, that the

asymptotic behavior of the higher order coefficients

B~ provides a reliable indication of the relative con-

vergence phenomenon and at the same time serves as a

guide for the correct choice of M. We can see by refer-

ence to Fig. 5 that the envelope of the higher order

coefficients B~ decreases steadi~y with increasing m,

providing that M is less than the critical value of 40.
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Fig. 8. Aperture E, field for inductive iris. b= 0.4a, P= 100. (a) M=25. (b) M=40. (c) M=41. (d) M =45.

For values of M greater than the critical value of 40, the

coefficients B~ exhibit an exponential growth for M

larger than the critical value of M= 40.

It can also be seen that B~’s exhibit a slight growth

for large m for M= 39; however, it is conjectured that

this is due to numerical errors such as roundoff, trunca-

tion, etc.

Fig. 6 shows a similar behavior for the mode coeffi-

cients for the symmetric inductive iris. Because of sym-

metry, all of, the even l?~’s are zero in this case. Fig. 7

corresponds to the case of a capacitive iris discontinuity

with a TEM mode incident. Once again the behavior of

the modal coefficients above and below the critical

choice of .M is similar to the ones in Fig. 5.

Fig. 8 shows the aperture Ev field for TEIO incidence

on the inductive iris. The aperture field was calculated

using (11) after the B~’s had been computed. It is clear

that up to ill= 40, the field-distribution plots exhibit

little change with M, due primarily to the dominance of

the lower order Bm coefficients. 130wever, for .M> 40,

the exponential growth of B~’s for m> 40 causes the

field distribution to be highly oscillatory, indicating a

large error in the field computation. It is interesting to

test whether the singular behavior prescribed by the
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Fig. 9. Aperture H, field for inductive iris. b= 0.4a, P= 100. (a) M=40. (b) M= 45.

edge condition is indeed present in the numerically

computed results for the H-field component transverse

to the edges of the iris, To this end, the aperture H. field

was calculated and plotted in Fig. 9. The results clearly

show that the H, field becomes large as one approaches

the edge of the iris. The figure also shows that following

the pattern of the Ev field, the error in the computed H,

field also becomes large as ill is increased beyond the

critical value 40.

VI. CONCLUSIONS

An analytical explanation has been given for the

relative convergence phenomenon arising in the solu-

tion of the integral equation for the iris discontinuity

problem by the moment method. A numerical criterion

for choosing the correct ratio of M/P has been sug-

gested. The theoretical prediction has been verified by

the numerical calculations,

For more general and complex structures, e.g., circu-

lar iris in rectangular waveguide, the simple analysis

given here would not apply; hence, it would not be

possible to derive an analytical criterion for the choice

of the correct ratio of 11/~. However, it appearsz that

for the general case, a numerical study of the higher

order coefficients may be used as a reliable guide for

choosing the critical ratio.

z This has in fact been successfully verified recently by solving
the problem of a strip grating in a dielectric slab [13].
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