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Analytical and Numerical Studies of the Relative
Convergence Phenomenon Arising in the
Solution of an Integral Equation
by the Moment Method

RA]J MITTRA, rerrow, 1IEEE, TATSUO ITOH, MEMBER, IEEE, AND
TI-SHU LI, STUDENT MEMBER, IEEE

Abstract—The relative convergence phenomenon that occurs in
the numerical solution of the integral equation for the iris discon-
tinuity problem is studied both analytically and numerically. It is
-shown that the solution for the aperture field can be highly dependent
upon the manner in which the kernel and the unknown function are
approximated in the process of constructing a matrix equation by the
moment method. An analytical explanation is provided for the above
phenomenon and the theoretical predictions are verified numerically.
Also included is a suggested numerical algorithm for detecting
and alleviating the relative convergence behavior for more general
problems.

1. INTRODUCTION

T WAS pointed out a number of years ago [1] that
I[ the manner in which one partitions a doubly in-
finite matrix arising in the formulation of the
boundary value problem in a bifurcated waveguide

Manuscript received December 10, 1970; revised March 24,
1971. This work was supported by U. S. Army Research Grant DA-
ARO-G1103. The major portion of this paper was presented at the
Fall URSI Meeting, Columbus, Ohio, September 1970,

The authors are with the Antenna Laboratory, Department_of
Electrical Engineering, University of Illinois, Urbana, Ili. 61801.

significantly affects the results for the scattering coef-
ficients in the guide. This phenomenon was referred to
as “relative convergence” and it was proven that there
exists a unique choice for the partitioning ratio that
yields the correct result. It was also demonstrated that
anything but the correct choice of partitioning will
lead to results that violate the “edge condition” [2].

Recently it was discovered that the relative con-
vergence phenomenon also occurs in a variety of other
problems [3]-[5], even where a completely different
mode of formulation is employed. It was found, for
instance, that the matrix equation obtained by the
mode matching formulation [6], [7] or by the applica-
tion of the moment method to integral equations ex-
hibits relative convergence. As an example, it has been
found that the integral equation

b
[ ke owerar =g, 0<e<t @

for the iris discontinuity problem in a waveguide ex-
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Fig. 1. Inductive iris in parallel-plate waveguide.

hibits a relative convergence phenomenon when solved
by the moment method. That is, if ¢(x), the unknown,
is approximated in terms of an M-term Fourier series

Y(x) = ; Butpm(%) (2)

then the best approximation to the true solution is ob-
tained for a critical value of M, say M, The critical
value M, is in turn dependent on P, the number of terms
retained in the truncated form of series representation
for the kernel

K(x, #) = 2 anxn(®@)xa (). 3)

na=l

For the iris problem, the x,’s are the Fourier series
basis functions for the range 0 <x <a, and a is the trans-
verse dimension of the waveguide.

The purpose of this paper is twofold: to provide an
analytical explanation of the relative convergence
phenomenon arising in the iris discontinuity problem;
and to suggest a numerical approach for detecting and
resolving the relative convergence phenomenon.

In Section II, an integral equation is derived for the
iris discontinuity in the waveguide and transformed
into a matrix equation using the moment method. An
alternative set of equations is derived for the same prob-
lem in Section III, using the mode matching method.
This set of alternative equations, although equivalent
to those derived earlier by the moment method, are
found to be more convenient for analytical processing.

In Section IV, the modified residue calculus technique
is applied to solve the matrix equation obtained by the
mode matching method. The critical value of M is now
determined by investigating the asymptotic behavior
of a generating function of complex variable, the
residues of which are related to the unknown modal
coefficients in the waveguide.

Finally, some numerical results that support the
theoretical predictions of Section IV are presented in
Section V. A method for detecting the relative conver-
gence phenomenon and extracting the correct solution
in the presence of this phenomenon is suggested on the
basis of the numerical experiments on the iris problem.

1I. MoMENT METHOD OF SOLUTION

The geometry for the iris discontinuity problem in the
parallel-plate waveguide is shown in Fig. 1. The dis-
cussion below will be restricted to the TE case only,
although the analysis for the TM case can be carried out
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Fig. 2. Equivalent geometry of inductive iris in
case of symmetrical excitation.

along similar lines. It is well known that the solution to
the original iris problem can be derived from those of
two auxiliary problems—the symmetrical and asym-
metrical excitations. For the latter case, the aperture
(z=0, 0<x<b) is replaced by the electric wall, and
hence, the problem becomes a trivial one. The sym-
metrical case leads to the auxiliary problem shown in
Fig. 2, where the aperture is replaced by a magnetic
wall. In the following, only this auxiliary problem is
treated since it contains the necessary information for
constructing the solution to the original problem.

‘The first step is to write the total field in terms of the
eigenfunctions of the waveguide when the TE, mode
is incident from the left.

STE nry

Ey(%, 5) = sin — e~ -+ >~ A, sin— etone  (4)
a n=1 a

()]
Se-@T e

All the other field components are derivable from this
expression. In view of the boundary conditions at the
plane =0, we have

27

STY hed . nTx
E,(%,0) = sin— + Y A,sin —
a n=1 a
x 0<x<b
={ux ©
0, b<zx<a
IE % d nwx
—(x,0) = — assinﬁr-—-l— ZanAnsin—w—
.0z a n=1 a
0 O0<x<d
-4 * M
£(x), b<zx<a

where ¢ (x) is unknown aperture E field for 0 <x <5,
and £(x) is proportional to the unknown surface current
on theslit, b<x <a.

By Fourier analyzing (6) and substituting 4, into
(7), we may derive the integral equation for the aper-
ture field ¥ (x):

[ K@i =g, 0<s<s ©

where

© nwx | nwx
K(#, &) = D ay sin — sin —— O]

n=1 a a
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is the kernel and

. swx
g(%) = ao, sin —
a

(10)
the known inhomogeneous term.

To solve the integral equation (8) by one of the
moment methods, say Galerkin’s method [8], we first
approximate ¥(x) with a finite number of basis func-
tions

= Z Bubn(x),

m=1

. mwx
¥(x) om(x) = sin —— - (11)
Next, we substitute (11) into (8) and take the inner
product of (8) with the weight functions ¢;(x), I=1,
2, « + +, M. The result is the M X M matrix equation.

M

D Bu<¢n Kon> = <¢y, £>,

m=1

1=1,2,---,M (12)

where K is an integral operator given by

K= f bdx’K(x, ) (13)

and the inner product <¢;, g> is explicitly written as

b

<one> = [ au@sin. 19
0

The exact solution to the integral equation can in prin-

ciple be obtained from (12) after letting M— . In

practice, however, M is necessarily finite and the sum-

mation in K (x, x") must also be truncated, say at n=P.

After carrying out the necessary integrations, (12)
can be explicitly written as

. nwb
. ay, $in? ——
a
B, ( 1)m_— Z
m§=:1 I/ — (an —-,812)(01” »Bm2)
. swb
sin —
a
= Qo , =12 , M (15)
a32 - ﬂlz
where

[ R R P

I11I. MopE MATCHING METHOD OF SOLUTION

In Section II we transformed the integral equation
into a matrix equation using the moment method. In
this section an alternative set of equations is derived by
an application of the mode matching method.

First, we introduce an auxiliary geometry shown in
Fig. 3, where a small septum of length § is introduced.
It is evident that the original structure in Fig. 2 can be
recovered by letting §—0 in the auxiliary geometry. We
now write the eigenfunction expansions for the fields in

T Ey o l—
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Fig. 3. Auxiliary geometry for iris discontinuity problem.

the fictitious waveguides B and C as follows:

X nwa
Ey(x, Z) = Z B" sin —b- {g—ﬂnz _I_ eﬁn(z_a)}/z’
n=1
0<x<b (17)
nwae — &
Ell(x; Z) Z C sig —— 7 7l'< ) {e—-‘lnz — e'yn(z—é)}/z,

¢
b<x<a (18)
where 3, is given by (16) and

O R O

Note that the infinite summations in (17) and (18) are
truncated at M and N, respectively. After truncating
the summation in (4) at =P, we match the fields at
the interface z=0. Letting § go to zero, we obtain the
equations

nwy M nrx
sm—-}—ZA sin — = »_ B, sin—
a n=1 a n=1 b
0<a<bd (20a)
. swx nwx
—agsin —— + ZanA sin— =0, 0<x<b (20b)
a =1 a
STX nTE
sm———{—ZA sin — = 0, b<zx<a (2la)
a ne=1 a
s nwxy N nw(e— x
—assin — + Ea,,LA sm— = — D> 7.Cp sin ——u;
a n=1 n=1 4
b<z<a (21b)

The next step is to transform these equations into the
spectral domain by eliminating the x variation. To this
end we multiply (20) by sin (mwx/b) and integrate from
0 to b. Also, (21) is multiplied by sin {mﬂ'(a—x)/c}
and integrated from b to a. This gives

. swb
sSin —— P /1_ b2
a
as? — ,8m2 E ,Bm ( )
m=1,2,---,M (22a)
. swb
Qs SIN —— P Z
a Aptly
.. I}
as? — IBmz n=1 anz - ﬂmz
m=1,2,---,M (22b)
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. swb
sin —— P Z
a n
- S+ 2 =0,
OCSZ — ‘sz n=1 Cp" — 5m2
m=1,2,---,N (23a)
. swb
o SIn —— . vl 2
a Qpddp
E + 3 (g,
s2 - 'sz n=1 an2 - ')"m2 2mw
m=1,2,---, N (23b)
where
— . nwh
A, = A, sin— - (24)
a

By choosing M+ N =P, we can solve the P X P matrix
equation comprising (22b) and (23a). Substituting the
resulting A,’s into (22a) we may then obtain the ex-
pansion coefficients B,, of the aperture E field in the
region 0<x <b.

We may also derive an alternative set of equations by
Fourier analyzing (20) and (21) in the range 0<x <a.
The equations read

(— 1)n+1n_7r B,
mmh M b

a .
Y [6,m 4+ 4,.] = sin > g

@ p=1 an T Oy

m=1,2,---, P (25a)
(_1)n+1£7ncn
a o omwb N
Q|8 — A ] = sin Z ’
& p=1 'Ynz - Olm‘7
m=1,2 .- P (25b)

The above set of equations allow us to solve for B, and
C, directly by choosing M+ N =P and eliminating 4.,

Qur next step is to show the equivalence between the
moment method and the mode matching method. To
this end, we eliminate 4, from (22b) and (25a) and ob-
tain

mw . nwh
(—1)?—sin? —
M i b a
B Oln
mgl n=1 (an2 - ﬁm2) (an2 e ,812)
. swb
sin ——
5
= Qs —
- B’

We observe that (26) is identical to (15) obtained earlier
by the moment method. Having demonstrated the
equivalence between the truncated forms of matrix
equation derived via mode matching and moment
methods, we return to (22) and (23) and construct an
analytical representation for its solution. The reason for
our going through this elaborate procedure of deriving
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the auxiliary equations and showing their equivalence
to (15) is that the latter set does not lend itself directly
to convenient analytical processing.

IV. INVESTIGATION BY THE MODIFIED
REesDUE CaLcULUS TECHNIQUE

The modified residue calculus technique [9], [10] is a
useful method for solving the infinite set of equations of
the type (22) and (23). The method has a number of
unique features, one of which is its ability to enforce the
satisfaction of the edge condition. We will make use of
this feature to investigate the relative convergence
phenomena.

To this end, we first multiply (22a) and (23a) by B
and vym, respectively, and add and subtract the resulting
equations from (22b) and (23b). We then obtain

. swh
sin — i
P 28,,
= ()" =" 5,
os + ,8,,, | - ﬁm 2w
m=1,2, , M (27a)
swh
Sln"‘— P bzﬂ
— Z = (—1)mt1 it Bon,
- ,8m n=1 + ﬁ 21’}’Mr
m=1,2 , M (27b)
. swb
sin — » T
oy oy,
243 + Ym n=1 On = VYm 2mmw
m = 17 27 Ty N (283)
. swb
sin —— - 1 2y
a s
e b s aarey
ds = Vm ngi Ay + Ym ( ) 2mmw
m=1,2,-+-+-,N. (28b)

Also eliminating B, and Cn, we get

néian'—ﬁm an—{_ﬂM‘

< 1 1 b
= -+ ) sin ——
(843 + ﬁm Og — ﬁm a

m=1,2,---, M (29a)
i 4, A4, N\
o
n=1 \p ™ V¥m an+'Ym‘
< 1 ) smb
= — sin —— »
as+’Ym\ Xy — Ym a
m=1,2,-+-,N. (29b)

The essential step in the modified residue calculus
technique is the construction of a meromorphic func-
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tion f(w) satisfying the following conditions:
1) f(w) has simple poles at w=au,
n=1,2,...,P,and at w= —a..
2) fBm)+f(—Bm)=0, m=1,2,---, M, M+N=P.
FfOym)—f(—Ym)=0, m=1,2,---, N, M+N=P.
3) flw)~w, 1<y<2as 1w| — w,
4) Rf(——as)=siniz—b

where R;(—as) is the residue of flw) at w= —a.

It is possible to relate the unknown coefficients 4,, By,
etc., to the function f(w) via the following manipula-
tions. Consider the integrals appearing below with con-
tours C as circles at infinity.

1
Lg e NECEW
217 ¢ lw—Bn w+Bm
1 { flw) fw)
—_ — dw.
2njJ ¢ \W—7Ymn w7
Then it can be shown [9] that
A, = Rf(an); n=1,2,--+,P (30)
mZ'mw
B, = (_1) Z%B_mf(—ﬁm)y m = 1; 27 Tt M (31)
2mw
Cn = (—1)m2—f(—'7m),
CYm
m=1,2 -+, N=P—M. (32)

From these equations we see that once the function
f(w) is constructed, the problem can be considered as
solved. A suitable form of f(w) is

flw) = Kg(w)p(w) (33)
g(w) = exp E (b In % +¢ln —Z—ﬂ % (34)
p(w)=1+:é p“’f"w+é%‘”dj& (35)
where
(o, B) = IA:I1 <1 - ;Z’—) exp (—%) (362)
w(w, v) = }J;VII (1 — %) exp <;wj:) (36b)

The unknown constants ¢, and d, are to be determined
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so that the condition 2) is satisfied, and the normaliza-
tion constant K is determined from the condition 4).
It should be remarked that except for a normalization
constant, g(w) can be identified with the exact solution
for the semi-infinite bifurcation problem, i.e., the one
where § is infinite in Fig. 3.

We will not attempt to construct an exact form of
f(w) by determining ¢, and d, Instead, we will merely
investigate the asymptotic behavior of f(w) when M,
N, and P become large and show that only one critical
choice of M/ N gives the correct asymptotic behavior of
f(w), which, in turn, determines the behavior of the
field coefficients 4,, Ba, and C, for large .

Note first that all of these coefficients must behave as

Ap, By, Cp ~ n=3/2, with # — oo,

This is required by the physical constraint that the field
must satisfy the edge condition [2]. From (30), (31),
and (32), it can be shown that »=3/2 in the condi-
tion 3).

Mittra [1] proved that the canonical function g(w)
shows the relative convergence phenomena. That is,
when M, N, P—w,

@)~ o] - (37)
only if M/N=>b/¢c, and g(w) either decays or grows
exponentially for any other choice of M/N. What we
will now show is that, for an incorrect choice of the
ratio M/ N, the asymptotic behavior of f(w) is the same
as that of g(w). This is because the perturbation factor
p(w) in f(w) cannot alter the exponential behavior due
to g(w).

In the following, we consider the behavior of p(w) as
Iw[ — o for two different cases. It should be pointed out
that for convergence reasons we need only consider the
cases where ¢, (or d,) either decays exponentially or has
the behavior p*, 4 <0.

Case 1 ‘
¢, decays exponentially

0

s() = 2

p=1

C
2~ 0w )
p — @

(38)

and hence p(w)~0(w?).
Case 2a
e ~ 0(p"), -1 <»<O.

We apply the Euler—Maclaurin sum formula [11]

K—1 0 v
@~y P (39)
p=1Bp — @ p=K P70
_b— — )
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Fig. 4. Normalized susceptance of inductive iris versus
values of M. TEy, incident, b =0.4¢, P =100.

=l o b " .
HOED) c Lo {f lz(x)dx—l——(——)
=1 :81: - w T K 2
= B?n d(?'"_l)
- T ——— (K 40
nz=:1 (2n)! dxnD ( )} (40)

where K is some large integer beyond which we can ap-
proximate ¢, 2= ¢op” and 8, =~ pw/b; Ba, are the Bernoulli
numbers; and A(x) is given by

x” bw

h(x) =

(41)

p—a T

Using the Stieltjes transform. [12 ] when arg a0 or the
Hilbert transform [12] when arg e =0, we find

fwh(x)dx =th(x)dx—}—K0a”£0(a"). (42)

0

Hence
s(w) ~ 0(w?), —1<r<0 (43)
for large w. This gives
p(w) ~ 0(w™).
Case 2b
cp ~0(p7")
b
hod e w Gob

@2 T T

where C. is the Euler's constant and y¢(x) is the di-
gamma function defined by

fe.- S u-af @y

¢ 1
Y(x) = = n I'(x).

X

(45)

T'(x) is the conventional gamma function and o =bw/m.

101
3 f
54.5
/'M = 45
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}\m =4
- = 40
Ly - 30
=M= 37
0 8 16 FTRN 40 z:s
Fig. 5. Magnitude of B,, for inductive iris
versus . TEp incident, b =0.4a.
The asymptotic form of Y (x) is
Ing ——; largxl <7
x
Y(x) ~ (46)
In (—x) — 7 cot mx — — arg ¥ =
2x
Hence for large w
ws{w) ~ 0(ln w) 47
and
plw) ~ 0(ln w).
Case 2¢
c» ~ 0(p", v < — 1.

It is easy to show that the summation converges uni-
formly and

s(w) ~ 0(w™) (48)
and hence p(w)~0{w®).

On the basis of the above results, we conclude that
the presence of the factor p{w) in f(w) cannot alter its
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All even B 's are zero
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Fig. 6. Magnitude of B,, for symmetric inductive iris versus
m. TEy incident, 40 percent aperture width, P=100.

asymptotic behavior when g(w) either exponentially de-
cays or grows for large w. Hence, just as in the case of
bifurcated waveguide, correct results are obtained only
for the numerical choice of the ratio

M/P = b/a. (49)

By reference to (30), (31), and (32), we note that the
field coefficients have an exponential behavior for large
»n unless (49) is satisfied.

In addition to the theoretical explanation given
above, it is possible to provide an intuitive interpreta-
tion! of the relative convergence phenomenon arising in
the moment method of solution. Since the kernel
K (x, x’) has been approximated by truncating the right-
hand side of (3), the computations are insensitive to
spatial oscillations of ¢(x) that are more rapid than a
certain fixed amount, which depends directly on P. Er-
roneous results must be obtained if M is so large that
excessive spatial oscillations of Y(x) are included. The
point is that if A/ is too large compared with P, then the
matrix that has to be inverted becomes ill conditioned.

1The authors are grateful to one of the reviewers for suggesting
this explanation.

s t
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0 10 20 m o 30

Fig. 7. Magnitude of B, for capacitive iris versus .

TEM incident, =0.4q, P=100.

V. NumMmEeRrIicaL REsULTS AND DISCUSSION

In this section we present some numerical results in
support of the predictions based upon the theoretical
discussion in the last section. Fig. 4 shows the nor-
malized susceptance of the inductive iris discontinuity.
Because the ratio of the aperture area to the total guide
dimension is 40 percent and P =100, then M =40 should
give the best answer. It may be noticed that for M <40
the numerical value of susceptance is not greatly in
error. However, for 4 >40 the numerical values for the
susceptance deviate rather rapidly from the correct
results.

We also note that on the basis of the susceptance cal-
culations alone, it is not possible to select the correct
value of M without resorting to experimental verifica-
tion of the calculated data. We find, however, that the
asymptotic behavior of the higher order coefficients
B., provides a reliable indication of the relative con-
vergence phenomenon and at the same time serves as a
guide for the correct choice of M. We can see by refer-
ence to Fig. 5 that the envelope of the higher order
coefficients B, decreases steadily with increasing m,
providing that M is less than the critical value of 40.
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Fig. 8. Aperture E, field for inductive iris, b=0.4¢, P=100. (a) M =25. (b) M =40. (c) M =41, (d) M =45,

For values of M greater than the critical value of 40, the
coefficients B, exhibit an exponential growth for M
larger than the critical value of M =40.

It can also be seen that B,’s exhibit a slight growth
for large m for M =39; however, it is conjectured that
this is due to numerical errors such as roundoff, trunca-
tion, etc.

Fig. 6 shows a similar behavior for the mode coeffi-
cients for the symmetric inductive iris. Because of sym-
metry, all of the even B,.’s are zero in this case. Fig. 7
corresponds to the case of a capacitive iris discontinuity
with a TEM mode incident. Once again the behavior of

the modal coefficients above and below the critical
choice of M is similar to the ones in Fig. 5.

Fig. 8 shows the aperture E, field for TE,, incidence
on the inductive iris. The aperture field was calculated
using (11) after the B,’s had been computed. It is clear
that up to M =40, the field-distribution plots exhibit
little change with M, due primarily to the dominance of
the lower order B, coefficients. However, for M>40,
the exponential growth of B,’s for m>40 causes the
field distribution to be highly oscillatory, indicating a
large error in the field computation. It is interesting to
test whether the singular behavior prescribed by the
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Fig. 9. Aperture H, field for inductive iris. b=0.4a, P=100. (a) M =40. (b) M =45.

edge condition is indeed present in the numerically
computed results for the H-field component transverse
to the edges of the iris. To this end, the aperture H, field
was calculated and plotted in Fig. 9. The results clearly
show that the H, field becomes large as one approaches
the edge of the iris. The figure also shows that following
the pattern of the E, field, the error in the computed H,
field also becomes large as M is increased beyond the
critical value 40.

VI. CoNcLUSIONS

An analytical explanation has been given for the
relative convergence phenomenon arising in the solu-
tion of the integral equation for the iris discontinuity
problem by the moment method. A numerical criterion
for choosing the correct ratio of M/P has been sug-
gested. The theoretical prediction has been verified by
the numerical calculations.

For more general and complex structures, e.g., circu-
lar iris in rectangular waveguide, the simple analysis
given here would not apply; hence, it would not be
possible to derive an analytical criterion for the choice
of the correct ratio of M/N. However, it appears? that
for the general case, a numerical study of the higher
order coefficients may be used as a reliable guide for
choosing the critical ratio.

2 This has in fact been successfully verified recently by solving
the problem of a strip grating in a dielectric slab [13].
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